Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 468: 133134, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387171

RESUMEN

The rising heavy metal contamination of soils imposes toxic impacts on plants as well as other life forms. One such highly toxic and carcinogenic heavy metal is hexavalent chromium [Cr(VI)] that has been reported to prominently retard the plant growth. The present study investigated the potential of silicon (Si, 10 µM) to alleviate the toxicity of Cr(VI) (25 µM) on roots of wheat (Triticum aestivum L.) seedlings. Application of Si to Cr(VI)-stressed wheat seedlings improved their overall growth parameters. This study also reveals the involvement of two phytohormones, namely auxin and cytokinin and their crosstalk in Si-mediated mitigation of the toxic impacts of Cr(VI) in wheat seedlings. The application of cytokinin alone to wheat seedlings under Cr(VI) stress reduced the intensity of toxic effects of Cr(VI). In combination with Si, cytokinin application to Cr(VI)-stressed wheat seedlings significantly minimized the decrease induced by Cr(VI) in different parameters such as root-shoot length (10.8% and 13%, respectively), root-shoot fresh mass (11.3% and 10.1%, respectively), and total chlorophyll and carotenoids content (13.4% and 6.8%, respectively) with respect to the control. This treatment also maintained the regulation of proline metabolism (proline content, and P5CS and PDH activities), ascorbate-glutathione (AsA-GSH) cycle and nutrient homeostasis. The protective effect of Si and cytokinin against Cr(VI) stress was minimized upon supplementation of an inhibitor of polar auxin transport- 2,3,5-triiodobenzoic acid (TIBA) which suggested a potential involvement of auxin in Si and cytokinin-mediated mitigation of Cr(VI) toxicity. The exogenous addition of a natural auxin - indole-3-acetic acid (IAA) confirmed auxin is an active member of a signaling cascade along with cytokinin that aids in Si-mediated Cr(VI) toxicity alleviation as IAA application reversed the negative impacts of TIBA on wheat roots treated with Cr(VI), cytokinin and Si. The results of this research are also confirmed by the gene expression analysis conducted for nutrient transporters (Lsi1, CCaMK, MHX, SULT1 and ZIP1) and enzymes involved in the AsA-GSH cycle (APX, GR, DHAR and MDHAR). The overall results of this research indicate towards possible induction of a crosstalk between cytokinin and IAA upon Si supplementation which in turn stimulates physiological, biochemical and molecular changes to exhibit protective effects against Cr(VI) stress. Further, the information obtained suggests probable employment of Si, cytokinin and IAA alone or combined in agriculture to maintain plant productivity under Cr(VI) stress and data regarding expression of key genes can be used to develop new crop varieties with enhanced resistance against Cr(VI) stress together with its reduced load in seedlings.


Asunto(s)
Plantones , Ácidos Triyodobenzoicos , Triticum , Triticum/metabolismo , Silicio/farmacología , Citocininas/farmacología , Citocininas/metabolismo , Antioxidantes/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Ácidos Indolacéticos/farmacología , Prolina/metabolismo , Prolina/farmacología , Estrés Oxidativo
2.
Chemosphere ; 305: 135165, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35667508

RESUMEN

Although, silicon - the second most abundant element in the earth crust could not supersede carbon (C) in the competition of being the building block of life during evolution, yet its presence has been reported in some life forms. In case of the plants, silicon has been reported widely to promote the plant growth under normal as well as stressful situations. Nanoform of silicon is now being explored for its potential to improve plant productivity and its tolerance against various stresses. Silicon nanoparticles (SiNPs) in the form of nanofertilizers, nanoherbicides, nanopesticides, nanosensors and targeted delivery systems, find great utilization in the field of agriculture. However, the mechanisms underlying their uptake by plants need to be deciphered in detail. Silicon nanoformss are reported to enhance plant growth, majorly by improving photosynthesis rate, elevating nutrient uptake and mitigating reactive oxygen species (ROS)-induced oxidative stress. Various studies have reported their ability to provide tolerance against a range of stresses by upregulating plant defense responses. Moreover, they are proclaimed not to have any detrimental impacts on environment yet. This review includes the up-to-date information in context of the eminent role of silicon nanoforms in crop improvement and stress management, supplemented with suggestions for future research in this field.


Asunto(s)
Desarrollo de la Planta , Silicio , Agricultura , Estrés Oxidativo , Plantas , Silicio/farmacología , Estrés Fisiológico
3.
Environ Res ; 212(Pt D): 113481, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35588776

RESUMEN

Antarctic sea ice variability is primarily associated with ocean-atmospheric forcing driven by anomalous conditions over the tropical regions of the Pacific and Indian Oceans. The ice-ocean-atmosphere dynamics in the Indian Ocean Sector (IOS) of Antarctica have been studied using monthly satellite and reanalysis observations over four decades (1979-2019). In this study, we revealed that the annual sea ice extent (SIE) in the IOS increases at a rate of 0.7 ± 0.9% decade-1, with a maximum increase in austral summer (5.9 ± 3.7% decade-1). The wavelet approach was used to determine the variability in IOS sea ice caused by the El Niño/Southern Oscillation (ENSO) and southern annular mode (SAM). The SIE has a significant association with both indices during the summer and autumn. In comparison to ENSO, the sea ice variability associated with SAM is typically seasonal in nature and lacks distinct patterns. The wavelet coherence analysis revealed a relatively weak relationship between ENSO and SAM but a highly significant coherence between climatic indices and SIE. We observed that sea ice in the IOS is influenced significantly by climatic oscillations during their negative SAM/El Niño or positive SAM/La Niña phases. Furthermore, the study demonstrated a substantial impact of climatic disturbances in determining the sea ice variability in the IOS.


Asunto(s)
El Niño Oscilación del Sur , Cubierta de Hielo , Regiones Antárticas , Océano Índico , Estaciones del Año
4.
J Environ Manage ; 267: 110648, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421678

RESUMEN

The Amery ice shelf (AIS) dynamics and mass balance play key role to decipher changes in the global climate scenario. The spatio-temporal changes in morphology of the AIS were studied into a number of transects at 5 km uniform intervals using multi-dated Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite data (2001-2016) of the austral summer months (January-March). Past ice shelf extents have been reconstructed and future ice shelf extents were estimated for 5- and 10-year time periods. The rate changes of AIS extent were estimated using the linear regression analysis and cross-validated with the coefficient of determination (R2) and root-mean-square error (RMSE) methods. Further, the changes in shelf extent were linked to prevailing factors viz. mass changes, Southern Annular Mode (SAM) index, and ocean-air temperatures. The study reveals that the AIS extent has been prograded at the rate of 994 m/year with an average 14.5 km increase in the areal extents during 2001-2016, as compared to the year 2001, whereas, the maximum advancement in ice shelf extent was recorded during the 2006-2016 period. Based on the linear regression analysis, the predicted ice shelf extents (i.e., the summer 2021 and 2016) show progradation in all the transects. About 52% of transects exhibit ±200 m RMSE values, indicating better agreement between the estimated and satellite-based ice-shelf position. The recent changes (2017-2019) observed in the ice shelf are cross validated with predicted ice self-extent rates. The eastern part of Mackenzie Bay to Ingrid Christensen coast recorded advancement in the ice shelf extents and mass which is the feedback of positive SAM along with a decrease in the temperatures (air temperature and sea surface temperature). The present study demonstrates that the combined use of satellite imagery and statistical techniques can be useful in quantifying and predicting ice shelf morphological variability.


Asunto(s)
Cubierta de Hielo , Agua de Mar , Regiones Antárticas , Clima , Tecnología de Sensores Remotos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...